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LETTER TO THE EDITOR 

On the four-dimensional diluted Ising model 
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Rome, Italy 
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AbNa& In this 1-1 we show stmng numerical evidence tbat the four dimensional diluted 
king model for a h g e  dilution is not described by the mean-field exponents. These results 
suggest the existence of a new fixed point with non-Gaussian exponents: 

Random magnetic systems have been the subject of intensive studies over the last 20 years 
and much progress has been achieved. The simplest model for a random magnetic system is 
a ferromagnetic system in which the disorder induces fluctuations in the value of the coupling 
(or equivalently of the temperature). The simplest realization is a randomly diluted king 
system, where sites (site diluted) or bonds (bond diluted) are randomly removed. 

The equivalent Ginsburg-Landau model has the following form: 
c 

where 

Sd@l = /dDx (f(ag@(x)) 2~ + +2,+'~(x))@(x)z+ I $@04) (2) 

and the quenched random variables J are Gaussian distributed with variance 
.. ~. 

J ( x ) J ( y )  = 18(x - y). (3) 
Here both 1 and g play the role of coupling constants. It is possible to study analytically 

this model by considering the case a small coupling constants. In this case perturbation 
theory may be used to compute the renormalization group flow. 

One finds that in four (and more) dimensions the origin is an attractive fixed point, 
while in less than four dimensions there is a fixed point where both couplings are of order 
E in dimensions D = 4,- E. Apart from the detailed problem of computing &e fixed point, 
the situation seems to be clear. . .  ~~ 

However, this result tells us nothing about the possibility of having another fixed point 
for large values of the coupling constants. We already know that in the case of a pure 
system (1 = 0) there should be no other non-trivial fixed points but this statement does not 
imply that the same scenario is valid for 1. 
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Indeed let us suppose solving the model at fixed non-zero h and perform an expansion in 
g. It is extremely difficult to arrive to any conclusion. Indeed one should start by computing 
the free propagator C&, y). which satisfies the equation 

When m2 becomes sufilciently small, G&, y) diverges. In the pure case (i.e. J = 0) 
this divergence corresponds to the onset of long-range correlations. If we perform a 
perturbative analysis in I, we find that this property also holds at non-zero h; however, 
a more precise analysis shows that due to non-perturbative effects localized eigenvalues are 
present. 

The transition point is controlled by the extended eigenvalues of the free propagator; 
therefore also at values of m2 greater than the critical one the quadratic terms has negative 
eigenvalues and the g expansion is particularly tricky. One may think that the exponents 
controlling the localization transition are relevant; however, they are apparently also non- 
trivial for dimensions greater than 4. 

The g expansion at fixed I seems to lead nowhere. This may leads to the suspicion 
that there may be two different regimes one for small I and the other for large h. 

With this motivation we have studied the behaviour of a four dimensional diluted spin 
system, where according to the usual point of view the critical exponents should be those 
of mean field. We have found that at large dilution the exponent for the susceptibility y is 
definitely larger than one, thus suggesting that the mean field theory results do not hold. Our 
simulations have been done for lattices up to V = 324. We cannot exclude that for larger 
lattices the behaviour of the system crosses over to the mean field, although this possibility 
is rather unlikely. 

We tirst inwduce the model used. The Hamiltonian of the site-diluted Ising model can 
be written in the following form: 

n = -CG~S~G~S~ (5) 
(id 

where ( i ,  j )  denotes the nearest-neighbour pairs, Si = &1 are spin variables and ei are 
independent quenched variables taking the values 1 and 0 with probability p and 1 - p, 
respectively, p being the degree of dilution or proportion of spins. 

The phase transition disappears for p below a certain value known as pc. We can 
calculate this value using percolation theory, in four dimensions as pc = 0.197. At this 
point the critical exponents are U = 0.68, a = -0.72 and y = 1.44. It is clear that 
p C ( p )  + CO when p -+ pcr where f3&) is the critical point of (5) for a given value of 
dilution [Z]. 

The properties of the model with p = 1 are known, as it corresponds to the usual king 
model. There is a second order transition at bc = 0.1495 with critical exponents 01 = 0, 
y = 1 and U = 1/2 (the mean field values) 141. 

The influence of dilution on the I s i g  model can be studied with the help of the Harris 
criterion [3,4]: if the critical exponent a of the undiluted model is greater than zero the 
critical behaviour is modified, otherwise it is not. The present case, in four dimensions, is 
marginal with (Y = 0 and the criteria does not help us. 

Another approach is to use field theoretical methods [l]. If we introduce n replicas we 
arrive at an O(n) symmetric theory containing a cubic anisotropy term with a coefficient 
proportional to 1 - p 131. By calculating the one loop f3-function of this model and taking 
the l i t  n -+ 0, we find that the only fixed point in four dimensions is Gaussian. Thus, 
we have the mean field exponents independently of the dilution values 131. 
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A related model is the random bond king model defined by 

'H = -E JijSiSj (6) 

where the Jij are independent quenched variables taking the values 1 and 0 with probability 

This model is not identical to the sibdiluted model because although we can write 

(i.A 

p and 1 - p [4]. 

J.?" IJ E . E .  L J  (7) 
these JGW are not independent. However, it is believed that both models are in the same 
universality class. 

We now tum to the numerical method and observables used. We have used the cluster 
algorithm due to Wolf [5] for our Monte Carlo simulations. This update method has the 
advantage that it does not suffer from critical slowing down for the pure model in four 
dimensions. The dynamical critical exponent for the integrated correlation time of the 
magnetic susceptibility for the pure model is compatible with zero, z = -0.10(15) [6]. We 
do not believe that this will be strongly modified in the diluted case. It is easy to translate 
this algorithm to a diluted Ising model: one simply does not take into account the lattice 
holes when building a cluster. The average size of clusters is equal to the non-connected 
magnetic susceptibility for any degree of dilution. 

We have measured the non-connected susceptibility (xw), the total magnetization (M), 
the specific heat (C), the Binder cumulant (B) ,  the connected susceptibility ( x )  and the 
correlation among the magnetizations of parallel hyperplanes (Gplanc(d)) each defined as 
follows: 

1 
xw = p f 2 )  

x = 7 ( ( M 2 )  - (lMI)*) 

c = v ((P) - ( E P )  

1 

1 

where V = L4 is the volume, E is the total energy, is the correlation length and M(x)  is the 
total magnetization of the hyperplane fixed by x .  If we label the lattice by i = (XI. x2. x3. xq) 

the hyperplane magnetization is 

M ( x d  = S(xl,xz,X3rX4). 
XZ..WXr 

If fi  << fiC we can relate the susceptibilities by 

x = (1 - 2/70xw 
For completeness we report here the expected critical behaviour of the observables: 
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where x denotes either xw or x, t (T - T)/T,, is the reduced temperature and m is the 
intensive magnetization. 

To make fits we use the average of the hyperplanehyperplane correlation functions in 
the four directions. 

We have simulated two different dilutions: p = 0.8 and p = 0.3. The greater dilution, 
p = 0.3, is not very near to the percolation threshold (pc = 0.197). 

We have mainly worked on a large lattice, 244, with periodic boundary conditions and 
one disorder realization. For the calculations of the correlation length and for some runs 
at p = 0.3 we have used a V = 324 lattice. With these large lattice sizes we expect that 
the difference between different realizations o f  the disorder will be small provided we do 
not simulate very near to the critical point. We have checked this by comparing the results 
obtained using diKerent realization of disorder and by matching the L = 24 results with the 
L = 32 results. For the results reported in this letter the agreement is very good. 

We have run (on WorkStations) 27 different temperatures for the dilution p = 0.3 and 
22 for p = 0.8. A total of five million cluster updates have been done. To estimate the 
statistical error we have used the jack-knife method. 

A source of systematic error is the effect due to the finite size of our lattice. We have 
used the Binder cumulant to investigate this effect When the cumulant is different from 
zero (high-temperature phase) or one (low-temperature phase) finite size effects are present. 
Every measurement used in the fits reported in this letter has a Binder cumulant compatible 
with zero or one. In the thermodynamic limits this parameter tends to the step function 
with the discontinuity at the transition point. 

We have analysed the p = 0.8 data using (9) and the following ansatz suggested by the 
four-dimensional q54 theory [4] because the p = 0.8 dilution is expected to belong in the 
same universality class as the 4D Ising model and to have the same logarithmic correction: 

(m) - ( - t )Q~g(- t ) )~/~ t -= 0. 
(10) 

In some models arctanh((mz)) has a better signal than ("2). hence we report here the 
fits of this observable. 

We have used the following procedure to find the values of the critical exponents. Firstly 
we ignore all data with a Binder cumulant different from zero or one. We perform a global 
fit using the routine MINUIT [7]. We &peat this procedure successfully removing the high 
temperature data points and monitor the behaviour of the effective critical exponent as the 
data become nearer to the transition point. We observe a plateau and take as our estimate 
of the critical exponent this plateau. 

Our final results for p = 0.8 are shown in tables 1 and 2. Also we plot the specific 
heat against 0 in the lower part of figure 1. 

K"w tr t > 0. 

Table 1. Fits of the susceptibilities at p = 0.8. In the second and third columns we report the 
results of a pure power fa and in the fourth the x2 value of the fit In the last three columns the 
same anangement but with a power fit with logarithmic dependence as explained in the text 

,yw T D T. 1.13(11) 0.189qS) 0.18 1.W10) 0.1889(8) 0.065 
x T D T .  1.17(11) 0.1895(5) 0.04 1.08(8) 0.189Yl) 0.07 
x T < T .  1.11(9) 0.1894(3) 2.0 1.03(9) 0.18994(4) 2 
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lsble 2. Fits of the (m2) at p = 0.8. The notation is the same as in table 1. '+log' denotes a 
fit with a logarithmic conection ar explained in the text 

(m2) 0.82(1) 0.189 39(5) 0.26 
0.84(1) 0.189 35(5) 0.1 

flog 0.89(6) 0.189 37(3) 1.7 

0 " ~ ' " " ~ " " " "  
6a 0.4 0.6 0.8 I 

0.10 0.15 0.20 0.25 

P 
Fi@m 1. S e c  heat against 8 for the hvo values of  dilutions and V = m4. 

With strong dilution p = 0.3 we use a pure power fit (9) instead of (10). We analyse 
the susceptibilities and the correlation length for T > Tc. The results for the susceptibilities 
are reported in table 3. 

lsble 3. Fits of  susceptibilities at p =0.3. The The notation is the same as in table 1, without 
the log cormtion in the fit. 

Observable Y W x'Id.0.f. 

To estimate the error on the correlation length we have analysed the data of the 
hyperplanehyperplane correlation with the jack-knife method, estimating for each jack- 
k n i i  bin the correlation length by means of a x 2  minimization. Finally we use the jack- 
kniie method again to estimate the error of the previous series of binned correlation lengths. 
As the mean value we use those obtained with the whole set of hyperplane-hyperplane 
correlations. 

Using the pc obtained in the susceptibility fits we calculate the U exponent of the 
correlation length in a two parameter fit. The result is 

(11) 0.710 f-' = 2.9(7)[0.635 - p] 
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Figure 2 The non-connected (lower part) and eonnectcd (middle part) susceptibilities and the 
inverse of the codation length (upper part) against f l  for p = 0.3 and V = 324. The ewes 
are the fits described in the text We also mark with a vertical dotted line our test estimate of 
the critical point. 

with a xz/d.o.f. = 0.86. The largest value of 6 that we have used in the previous fit is 
s;naX = 4.69(5). Taking account the error bars on pc in (11) we report the final value as 

U = 0.7(1). 

In figure 2 we show the data for the non-connected susceptibility (lower part), the connected 
one (middle part) and the inverse of the correlation length (upper part) along with our best 
fits for these observables. Also, we plot the specific heat in the upper part of figure 1. 

The specific heat is quite different for the two degrees of dilution. In the case p = 0.8 
we observe a divergence of this observable while in the case with large dilution the specific 
heat does not show any divergence. This is already a strong indication of the different 
behaviour of the two dilutions. 

For p = 0.8 we have found critical exponents very similar to those of the pure king 
model. 

We have found that the value of the critical exponents show that for lattices up to 
V = 3Z4 the system, for p = 0.3, is not described by the mean-field theory, as one might 
have believed. Moreover, the critical exponents that we have found are very near to those 
of pure percolation. A possible explanation would be that the crossover from percolation 
to pure king is quite small; however, we do not see any indications which point in thii 
direction. 

These results suggest the existence of a new fixed point, which can be reached only by 
starting with strong disorder. It would be very intemting to investigate the propeaies of 
this fixed point analytically. It may be possible that replica techniques may be useful here. 

J J Ruiz-Lorenu, is supported by a MEC grant (Spain). It is a great pleasure for us to 
acknowledge interesting discussions with E Marinari, G Harris and D J Lancaster. 
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